An MSSS-preconditioned matrix equation approach for the time-harmonic elastic wave equation at multiple frequencies
نویسندگان
چکیده
منابع مشابه
Damping for the elastic wave equation
Résumé: Le but de ce projet est une investigation des techniques d’amortissement pour l’équation d’onde. Cette étude est intéressante tant du point de vue de la physique et que de l’analyse numérique. En effet l’amortissement apparâıt fréquemment dans les systèmes avec friction. Du point de vue mathématique, l’amortissement donne une meilleure régularité de l’équation élastique qui est importan...
متن کاملPerfectly Matched Layers for the 2D Elastic Wave Equation
The variable-split formulations of the perfectly matched layers absorbing boundary condition (PML) are derived for the 2D elastic wave-equation and tested for both homogeneous and layered velocity models by applying the 2-4 staggered-grid finitedifference scheme. Test results are compared with those by Cerjan’s sponge zone absorbing boundary condition. The comparison indicates that PML is signi...
متن کاملA Two--Scale Solution Algorithm for the Elastic Wave Equation
Operator-based upscaling is a two-scale algorithm that speeds up the solution of the wave equation by producing a coarse grid solution which incorporates much of the local finescale solution information. We present the first implementation of operator upscaling for the elastic wave equation. By using the velocity-displacement formulation of the three-dimensional elastic wave equation, basis fun...
متن کاملSinc operational matrix method for solving the Bagley-Torvik equation
The aim of this paper is to present a new numerical method for solving the Bagley-Torvik equation. This equation has an important role in fractional calculus. The fractional derivatives are described based on the Caputo sense. Some properties of the sinc functions required for our subsequent development are given and are utilized to reduce the computation of solution of the Bagley-Torvik equati...
متن کاملBabich's expansion and the fast Huygens sweeping method for the Helmholtz wave equation at high frequencies
In some applications, it is reasonable to assume that geodesics (rays) have a consistent orientation so that the Helmholtz equation can be viewed as an evolution equation in one of the spatial directions. With such applications in mind, starting from Babich’s expansion, we develop a new high-order asymptotic method, which we dub the fast Huygens sweeping method, for solving point-source Helmhol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Geosciences
سال: 2017
ISSN: 1420-0597,1573-1499
DOI: 10.1007/s10596-017-9667-7